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Morphology is closely linked to locomotion and diet in animals. In animals that undertake long-distance migrations, 
limb morphology is under selection to maximize mobility and minimize energy expenditure. Migratory behaviours 
also interact with diet, such that migratory animals tend to be dietary generalists, whereas sedentary taxa tend 
to be dietary specialists. Despite a hypothesized link between migration status and morphology, phylogenetic 
comparative studies have yielded conflicting findings. We tested for evolutionary associations between migratory 
status and limb and bill morphology across kingbirds, a pan-American genus of birds with migratory, partially 
migratory and sedentary taxa. Migratory kingbirds had longer wings, in agreement with expectations that selection 
favours improved aerodynamics for long-distance migration. We also found an association between migratory status 
and bill shape, such that more migratory taxa had wider, deeper and shorter bills compared to sedentary taxa. 
However, there was no difference in intraspecific morphological variation among migrants, partial migrants and 
residents, suggesting that dietary specialization has evolved independently of migration strategy. The evolutionary 
links between migration, diet and morphology in kingbirds uncovered here further strengthen ecomorphological 
associations that underlie long-distance seasonal movements in animals.

ADDITIONAL KEYWORDS:  ecomorphology – flycatcher – migration – movement ecology – natural selection – 
partial migration – Tyrannidae

INTRODUCTION

Animal movement is linked to morphology at 
various taxonomic scales. At a macroevolutionary 
scale, streamlined or aerodynamic body shapes have 
been associated with the evolution of long-distance 
migration in fish (Chapman et al., 2015), insects 
(Johansson et al., 2009) and birds (Fiedler, 2005). 
Within species, migratory distance has also been 
associated with streamlined body shapes in fish (e.g. 
Crossin et al., 2004) and aerodynamic shapes in birds 
(Voelker, 2001; Minias et al., 2015; Vágási et al., 2016). 
Although certain taxa with long-distance movements 
exhibit strong selection for energy-efficient body 

shapes, this is not universal (Mulvihill & Chandler, 
1990; Mönkkönen, 1995; Wang & Clarke, 2015). Thus, 
there is a persistent need to expand the taxonomic 
breadth of studies linking migration and morphology 
to better understand which lineages exhibit migration-
morphology associations, and why these associations 
vary among taxa.

Morphology is also shaped by foraging strategies. 
For example, dietary niche is associated with head 
and body shape in fish (Knudsen et al., 2011; Závorka 
et al., 2020), birds (Felice et al., 2019) and mammals 
(Swanson et al., 2019). Additionally, phenotypic 
plasticity is expected in dietary generalists, as shown 
in comparative common or garden experiments in 
stickleback minnows (Svanbäck & Schluter, 2012). 
In populations recently released from interspecific 
competition, such as island colonizers (Wilson, 
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1961; Clegg & Owens, 2002), phenotypic plasticity is 
thought to support increased morphological variation 
to limit intraspecific competition (i.e. ‘niche variation 
hypothesis’, Van Valen, 1965). Migratory lineages of 
dietary generalists may have strong preferences for food 
resources that are easiest to access (Sherry, 1984; Levey 
& Stiles, 1992; Bell, 2011) or that are superabundant 
(Moreau, 1952; Morse, 1971; Willis, 1974). In contrast, 
sedentary individuals may mitigate intra- and 
interspecific competition by seeking temporally stable 
food resources in microhabitats that are buffered 
from environmental fluctuation (e.g. temperature 
fluctuations; Bell, 2011). Comparisons across avian 
species (Levey & Stiles, 1992) and families (Chesser 
& Levey, 1998) have shown migratory taxa that forage 
on seasonally variable resources tend to exhibit more 
morphological variation, presumably associated with 
opportunistic foraging across a wider dietary breadth 
among or within individuals (Bell, 2011).

Testing how migration shapes morphological 
variation among taxa requires a phylogenetic 
comparative framework with comprehensive inter- and 
intraspecific sampling. Studies comparing migratory to 
sedentary birds support that long-distance migration 
favours longer (Rayner, 1988; Wiedenfeld, 1991; Pérez-
Tris & Tellería, 2001; Förschler & Bairlein, 2011; 
Tellería et al., 2013) and more pointed (Carvalho 
Provinciato et al., 2018; Gómez-Bahamón et al., 2020b) 
wings for increased aerodynamics. Hypotheses that 
link bill morphology and migratory status are less well-
studied, but hinge on differences in diet that covary 
with migratory status (Bell, 2011; but see Cox, 1968; 
Herrera, 1978; Leisler, 1990). Sedentary insectivorous 
taxa often have longer bills, presumably to improve 
closing speed for capturing highly mobile prey (Leisler, 
1990). In contrast, migratory taxa may have shorter 
bills for capturing slow-moving prey like caterpillars 
to feed young during the breeding season and small, 
abundant arthropods during winter (Thiollay, 1988; 
Leisler, 1990). Furthermore, studies on bill size in 
relation to foraging strategies disagree, such that both 
narrow and wide bills are associated with generalist 
diets (Tellería & Carbonell, 1999; Tellería et al., 
2013), and bill size differs between isolated specialist 
populations of the same species (Alonso et al., 2020).

Early assessments of morphological variation among 
migratory and sedentary avian species did not account 
for their shared evolutionary history (Cox, 1968, 1985; 
Leisler, 1990). Boyle and Conway (2007) advanced this 
approach by performing phylogenetically independent 
contrasts to address selective pressures for the evolution 
of migration between species (see also Gómez et al., 2016; 
Vágási et al., 2016). However, the literature on the role of 
migratory status in shaping morphological phenotypes 
in birds draws predominantly from comparisons among 
distantly related taxa [e.g. Rappole’s (1995) critique 

of Herrera (1978)]. Thus, detailed comparisons among 
taxa that differ in migratory status within a modern 
phylogenetic comparative framework are necessary 
for a more comprehensive test of how migration is 
associated with morphology at different taxonomic 
scales (e.g. Bolnick et al., 2007).

We used phylogenetic comparative methods to test 
for ecomorphological associations in wing and bill 
morphology among migratory, partially migratory and 
sedentary kingbirds (Tyrannus; Fitzpatrick et al., 2004). 
Kingbirds are flycatchers (Tyrannidae) with considerable 
variation in migration status and morphology within and 
among species, as well as a rich body of literature linking 
ecology and morphology (Fitzpatrick & Schauensee, 
1980; Fitzpatrick, 1981, 1985; Sherry, 1984; Cintra, 1997; 
Fitzpatrick et al., 2004; Gabriel & Pizo, 2005; Carvalho 
Provinciato et al., 2018; Gómez-Bahamón et al., 2020b). 
As aerodynamic theory predicts that longer, more pointed 
wings and shorter tails are more efficient for long-
distance migratory flights (Norberg, 1995; Pennycuick, 
2008), we expected migratory taxa to have longer and 
more pointed wings compared to sedentary taxa (Kipp, 
1942, 1958; Winkler & Leisler, 1992; Mönkkönen, 1995 
and references therein; Lockwood et al., 1998). Tails 
of long-distance migrants should also be shorter than 
more sedentary individuals to reduce drag during long-
distance flights (Rayner, 1988; Norberg, 1990; Winkler & 
Leisler, 1992; Förschler & Bairlein, 2011). However, tails 
are targets of sexual selection (Winquist & Lemon, 1994; 
Mobley, 2002), and tail lengths are often not associated 
with migration strategy (e.g. Voelker, 2001; Neto et al., 
2013). Within-population variation in flight capability 
could be associated with migration (Fernández & Lank, 
2007) or foraging ecology (Hromada & Tryjanowski, 
2003), so we also tested whether more migratory taxa 
have more variable wing morphology compared to less 
migratory taxa.

Bill morphology is closely tied to foraging niche (Snow, 
1953, 1954; Lack, 1971) and bill size and shape is typically 
related to broad dietary categories in birds (e.g. > 50% 
insectivorous, granivorous, frugivorous, etc.; e.g. Reaney 
et al., 2020). We therefore predicted that there would be no 
relationship between migratory status and bill size because 
all kingbirds are primarily insectivorous. Additionally, 
migration may impart an ‘ecological release’ associated 
with the evolution of a more variable, opportunistic diet 
(Bell, 2011). We thus predicted that more migratory taxa 
will have higher coefficients of variation in bill morphology 
compared to less migratory taxa.

MATERIAL AND METHODS

Phylogeny construction

We extracted the clade of 15 kingbird taxa from the 
Harvey et al. (2020) suboscine phylogeny to construct 
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a kingbird phylogeny that included 28 operational 
taxonomic units (OTUs). Harvey et al. (2020) included 
all species (13/13) but only 15% of the subspecific 
diversity (3/20). We therefore added Tyrannus savana 
taxa following phylogenetic relationships and branch 
lengths estimated by Gómez-Bahamón (2020a). The 
remaining subspecies were added as polytomies 
assuming a most recent common ancestor (MRCA) of 
0.5 Myr from members of their species group (Fig. 1A). 
To test the sensitivity of analyses to this assumption, 
we tested a range of different dates for the MRCA for 
the added subspecies, which did not change the results 
(Supporting Information, Appendix S1).

MorPhological MeasureMents

We measured bill length, width and depth at the 
distal end of the nares. We also measured unflattened 
wing chord length, Kipp’s distance (a measure of wing 
pointedness: the distance between the tip of the first 
secondary feather to the tip of the longest primary 
feather; Kipp, 1942, 1958; Baldwin et al., 2010), tail 
length and tarsus length on 2108 study skins from 
across the ranges of each species and subspecies 
(28 operational taxonomic units (OTUs); Fig. 1A; 
Supporting Information, Table S1.1). M.M. measured 
2008 specimens, and identified all individuals to the 
lowest level of taxonomic identification (using Clements 
et al., 2019) and classified each individual as migratory, 
partially migratory, or sedentary (sensu Fitzpatrick 
et al., 2004). Partially migratory taxa are those in which 
individuals vary in migratory tendency (Boyle, 2008). 
José Ignacio Giraldo Arango (see Acknowledgements) 
measured 100 specimens to improve sampling of some 
taxa. Bill and tail measurements were taken twice and 
were confirmed to be within 1 mm of one another. Both 
right and left wing chords and tarsus lengths were 
measured and averaged. Measurements by JIGA were 
only taken once. We measured tail length as the longest 
rectrix to the nearest 0.1 cm (Pyle et al., 1997). For 
most measurements, we used Mitutoyo IP 67 digital 
calipers (part number 573-271) with a range of up to 
15.24 cm, with 0.00127 cm resolution. For tails longer 
than 15.24 cm, we used a 30.48 cm stainless steel 
ruler placed between the two middle rectrices. When 
tails were longer than 30.48 cm, photos were taken of 
the tails above a 0.64 cm × 0.64 cm square grid with 
the calipers measuring to their extent and ImageJ 
was used to calculate the full tail length (Supporting 
Information, Appendix S2). We then averaged 
measurements across individuals within each OTU 
for downstream analyses. To test associations between 
migratory strategy and intraspecific morphological 
variation, we also calculated the coefficient of variation 
(mean/standard deviation) for each character and 
each taxon. This provides a scaled measure of 

variance for each character and allows for testing 
whether migratory strategies differ in the amount of 
intraspecific variation.

We tested whether accounting for age (juvenile vs. 
adult) and sex (female vs. male) classes improved 
linear models explaining morphological measurements 
among taxa. We did this using the mulTree function of 
the mulTree package (Guillerme & Healy, 2020) in R, 
which assesses intraspecific variation while accounting 
for phylogenetic relatedness (e.g. Nations et al., 2019). 
We found that including age class improved model fit 
for all characters except tarsus length and including 
sex class improved model fit for all characters except 
bill length and tarsus length (Supporting Information, 
Appendix S1, Table S1.2). We subsequently omitted 
juveniles from our analyses, but presented the results 
of both sexes combined in the main text because 
our results did not differ when analysing sexes 
independently (Supporting Information, Appendix S3).

Phylogenetic PrinciPal coMPonents analysis

We conducted a phylogenetic principal component 
analysis (PPCA) for bill measurements using the phyl.
pca function in the phytools package (Revell, 2009) 
because this gives information on bill volume and shape 
that is not reflected in individual bill measurements 
(Table 1). Bill PPCA scores were included in the 
following phylogenetic analysis of variance (see next 
section). PPCA was also conducted for the sexes 
separately (Supporting Information, Appendix S3).

Phylogenetic analysis of variance

We compared morphology between migratory, partially 
migratory and sedentary taxa via a phylogenetic 
analysis of variance (Garland et al., 1993) with the 
phylANOVA function in the phytools package (Revell, 
2012). As differences in body size can account for 
much of the variation among species (Albrecht et al., 
1993; McCoy et al., 2006; Revell, 2009; Berner, 2011), 
we extracted phylogenetic residuals (Revell, 2009) for 
each dependent variable (bill length, bill width, bill 
depth, wing chord, Kipp’s distance and tail length) 
with tarsus length as an approximation of body size 
and the independent variable. We opted to use tarsus 
instead of mass to adjust for body size (Rising & 
Somers, 1989; Senar & Pascual, 1997) because mass 
can change seasonally (particularly in migratory 
birds; Lindström & Piersma, 1993) and also varies by 
sex in some kingbirds (e.g. Tyrannus melancholicus, 
Jahn et al., 2010; Tyrannus savana, Carvalho 
Provinciato et al., 2018; Tyrannus tyrannus, Murphy, 
2007). To additionally support this decision, we used 
the mulTree function of the mulTree package to test 
whether tarsus length had the highest correlation 
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Figure 1. Ancestral state reconstruction of migration ecology category and wing chord length, as well as ordination of 28 
kingbird OTUs for bill (length, width, depth) and feather (wing chord length, tail length and Kipp’s distance). A, kingbird 
phylogeny showing ancestral state reconstruction of migration ecology strategy (pie charts at each node), and wing chord 
length (branch greyscale). B-D, PPCA plots showing individuals colour-coded to species (identified at the tip labels of the 
phylogeny), shape-coded to subspecies, and their status as migratory, partially migratory or sedentary is distinguished via 
the shape outline. Pie charts for each node in the phylogeny show the ancestral state reconstruction of migration type. E-H, 
photos of representative kingbird taxa with corresponding colour- and shape-coded points in the top right of each photo. 
Taxa are as follows: (E) Tyrannus savana savana (photo credit: Rodrigo Conte), (F) Tyrannus caudifasciatus caudifasciatus 
(photo credit: Yeray Seminario / Whitehawk), (G) Tyrannus crassirostris pompalis (photo credit: Martin Molina) and (H) 
Tyrannus cubensis (photo credit: Dubi Shapiro).
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among measurements while accounting for phylogeny, 
finding that tarsus length had the highest correlation 
with body mass among all variables for the individuals 
that had mass data (Supporting Information 1, 
Appendix S1, Table S1.3). We then conducted a 
phylogenetic ANOVA for each character using the 
residual values (with 1000 replicates) and reported 
mean P-values for pairwise, post-hoc comparisons of 
mean values and coefficients of variation between 
migration categories. As such, we conducted 51 tests 
of statistical significance, which raises the issue of 
multiple hypothesis testing (Shaffer, 1995). Opinions 
differ on whether or not to adjust P-values when 
testing multiple hypotheses (Curran-Everett, 2000) 
and the 0.05 conventional threshold is ultimately 
arbitrary (Wasserstein et al., 2019). Nonetheless, we 
report both uncorrected P-values and Bonferroni-
corrected P-values (N = 3 tests for each set of pairwise 
comparisons of means or coefficients of variation). 
We also performed ancestral state reconstructions 
of wing chord length with the contMap function in 
the phytools package (Revell, 2012) and of migratory 
status with the fit.mle function in the diversitree 
package (FitzJohn, 2012). All statistical analyses 
were performed using the program R v.4.0.3 (R Core 
Team, 2020).

RESULTS

The mean values for each morphometric character 
+/- standard deviation for all adults in each OTU are 
reported in Supporting Information (Table S1.1). We 
found that migratory taxa had longer wing chords 
(Fig. 2F; Table 2) and pointier wings than sedentary 
taxa (Fig. 2D; Table 2). However, we found no 
association between migratory status and coefficients 
of variation in wing or bill morphology (Fig. 2G-L; 
Table 2). In agreement with our prediction, we found 
no relationship between migratory status and bill 
depth, length, width, or bill PPC1 (Figs 2A-C, 3A; 
Table 2). However, migratory taxa had shorter, wider 
and deeper bills (bill PPC2) compared to sedentary 

taxa, which had longer, shallower and narrower bills 
(Fig. 3B; Table 2).

DISCUSSION

We found evidence of an association between migratory 
status and wing morphology in the kingbirds. This 
corroborates the idea that migratory birds have 
evolved morphological features that help in sustained, 
long-distance flight, such as longer wings (Winkler 
& Leisler, 1992; Milá et al., 2008; Neto et al., 2013; 
Carvalho Provinciato et al., 2018). There is a strong 
genetic component determining wing length (Böhning-
Gaese & Oberrath, 1999; Tarka et al., 2010), and among 
migratory taxa, wing length is positively associated 
with migratory distance (Förschler & Bairlein, 
2011; Rönn et al., 2016; Vágási et al., 2016; Carvalho 
Provinciato et al., 2018). Partial migration, wherein 
only some individuals migrate, is thought to be an 
evolutionary stepping-stone between sedentarism 
and obligate migration (Berthold, 1999; Bell, 2000; 
Chapman et al., 2011). However, partial migration can 
also be sex and age-class dependent, as is the case for 
T. melancholicus melancholicus (Jahn et al., 2010). 
Longer wings may allow for more flexibility in altering 
migration speeds according to conditions experienced 
during migration (Hahn et al., 2016), but there may 
be ecological limits and trade-offs imposed on wing 
length by other selective pressures, like shorter wings 
for aerial agility among arboreal species (Sheard et al., 
2020), for evading predators (Fernández & Lank, 2007) 
or for hovering flight (Marchetti et al., 1995).

Our finding of differences in bill shape between 
migratory and sedentary taxa suggests that bill shape 
is a potential target of selection pressures related 
to migration ecology. However, our comparisons of 
coefficients of variation did not support intraspecific 
competition as a driver of diversifying selection 
in bill morphology among generalist migratory 
kingbirds. The ratio of bill length/bill width holds 
potential significance in foraging behaviours in other 
tyrannids (Botero-Delgadillo & Bayly, 2012); however, 
our findings disagree with other research across 
the Tyrannidae describing generalists as having 
intermediate bill morphologies (Fitzpatrick, 1985). We 
found that sedentary taxa had longer, narrower and 
shallower bills compared to migratory taxa (Fig. 1B; 
Table 1). Previous work has shown that directional 
selection increasing bill length in dietary specialists 
may be driven by interspecific competition, including 
from closely related taxa (Freed et al., 2016). Thus, 
other selective pressures may be acting upon bill 
shape and size. For example, bill morphology has been 
linked with thermoregulation in dietary generalists, 

Table 1. Results of phylogenetic principal component 
analysis (PPCA) of bill measurements. Percent variance 
explained by each eigenvector is in parentheses for each 
principal component

Loadings Bill PPC1  
(94.52%)

Bill PPC2  
(4.47%)

Lambda

Bill length 0.99 0.14 0.95
Bill width 0.93 -0.33  
Bill depth 0.94 -0.27  
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Figure 2. Phylogenetic ANOVA results comparing residuals of bill and feather morphometrics (A-F) and coefficient of 
variation in bill and feather morphometrics (G-L) across migratory, partially migratory and sedentary kingbird OTUs. 
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and bill width and depth are adaptive for dissipating 
heat during migration for improved thermoregulation 
(Danner & Greenberg, 2015; Danner et al., 2017; 

Friedman et al., 2017). If convergence on bill shape 
is driven mainly by diet, future research integrating 
multivariate or nonlinear bill morphometrics (e.g. 

Table 2. T and P values from phylogenetic ANOVA analysis of adult Tyrannus flycatchers. Values shown in parentheses 
are P values with Bonferroni adjustment (N = 3) to account for multiple hypothesis testing. Significant results are in bold. 
Model F and Pr(>F) values can be found in Supporting Information (Table S1.4)

Morphometric Migratory vs. partially  
migratory

Migratory vs. sedentary Partially migratory vs. 
sedentary

 T P (adj. P) T P (adj. P) T P (adj. P)

Bill length 0.32 0.73 (1.00) 0.06 0.96 (1.00) 0.30 0.82 (1.00)
CV Bill length 0.39 0.72 (1.00) 1.90 0.23 (0.66) 2.04 0.15 (0.39)
Bill width 0.20 0.82 (1.00) 1.68 0.30 (0.86) 1.65 0.24 (0.74)
CV Bill width 1.01 0.29 (0.99) 2.49 0.10 (0.33) 1.00 0.49 (1.00)
Bill depth 0.50 0.60 (1.00) 2.17 0.17 (0.49) 1.29 0.40 (1.00)
CV Bill depth 0.74 0.44 (1.00) 0.34 0.85 (1.00) 1.10 0.45 (1.00)
Bill PC1 (size) 0.07 0.94 (1.00) 0.62 0.70 (1.00) 0.45 0.74 (1.00)
CV Bill PC1 (size) 0.03 0.99 (1.00) 0.073 0.96 (1.00) 0.096 0.95 (1.00)
Bill PC2 (shape) 0.64 0.53 (1.00) 3.91 0.01 (0.03) 2.60 0.06 (0.18)
CV Bill PC2 (shape) 0.19 0.85 (1.00) 1.32 0.40 (1.00) 0.91 0.50 (1.00)
Kipp’s distance 2.11 0.05 (0.11) 3.73 0.02 (0.04) 0.83 0.57 (1.00)
CV Kipp’s distance 0.71 0.43 (1.00) 0.79 0.62 (1.00) 0.12 0.94 (1.00)
Wing chord length 0.71 0.48 (1.00) 3.78 0.02 (0.03) 2.42 0.09 (0.20)
CV Wing chord length 0.56 0.54 (1.00) 0.28 0.87 (1.00) 0.39 0.78 (1.00)
Tail length 0.93 0.32 (1.00) 0.34 0.84 (1.00) 1.32 0.35 (1.00)
CV Tail length 1.15 0.23 (0.76) 0.35 0.83 (1.00) 0.98 0.49 (1.00)
CV Tarsus length 0.29 0.78 (1.00) 2.81 0.06 (0.16) 2.71 0.04 (0.16)

Figure 3. Phylogenetic ANOVA results comparing bill phylogenetic principal component (PPC) scores across migratory, 
partially migratory and sedentary kingbird OTUs. A, Bill PPC1 scores. B, Bill PPC2 scores. Letters above each bar plot show 
groupings resulting from post-hoc pairwise comparisons.

(Figure 2. continued) Note: although Kipp’s distance was significantly different between migratory and sedentary taxa for 
all adults, this was not significantly different after Bonferroni correction when males were assessed separately (Supporting 
Information, Table S3.6). Letters above each bar plot show groupings resulting from post-hoc pairwise comparisons.
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hooked bills, lateral and longitudinal bill curvature, 
bill surface area; Shao et al., 2016) with degrees 
of intraguild dietary specialization and foraging 
behaviours would broaden our understanding of 
selection mechanisms shaping bill phenotypes.

The range of phenotypes shaped by migratory status 
is likely to be more varied than has been historically 
detectable using linear measurements of morphology 
alone. Divergence in bill shape between migratory and 
sedentary taxa may define an important component of 
the suite of co-adaptations for migratory life histories 
(Bell, 2000). Morphology may be driven by selection 
related to migration itself, such as an increased need 
for heat dissipation or conservation in flight (see 
above). Alternatively, morphology may be shaped by 
a more complex competitive landscape that affects 
migratory and sedentary taxa differently. In taxa 
occupying tropical regions, like many kingbirds, 
the dry season is when both intra- and interspecific 
competition increase due to ‘winter food limitation’ 
and competition with migrants returning to wintering 
grounds, and competition with juvenile conspecifics 
(Hespenheide, 1975; Emlen, 1977; Orejuela et al., 1980; 
Stiles, 1980; Waide, 1980; Rappole et al., 1989; Rappole, 
1995; Sherry, 2005; Danner et al., 2013). Selection may 
favour longer bills among sedentary taxa to resolve 
both intra- and interspecific conflict (Table 1; Fig. 
3B), allowing access to more temporally stable food 
resources in microhabitats buffered from spatial and 
temporal environmental fluctuations (Bell, 2011).

Migratory and sedentary taxa may not differ in 
linear, individual bill metrics if a combination of 
characteristics (e.g. Table 1; Fig. 3B) support a more 
generalist foraging strategy. For example, specific bill 
shapes could accommodate spatiotemporal changes 
in the competitive landscape (Navalón et al., 2019) 
or provide increased stability for prey capture in 
perch-gleaning or hover-gleaning foraging techniques 
(Fitzpatrick, 1985; Fitzpatrick et al., 2004; Botero-
Delgadillo, 2011; Botero-Delgadillo & Bayly, 2012). The 
diversity of habitats that migratory taxa encounter 
during their annual cycle may shape phenotypes 
in more complex ways than previously thought, 
and techniques that incorporate more advanced 
characterizations of morphological variation may 
expose novel insight into how movement life history 
strategies shape phenotypes (e.g. Pol et al., 2009; 
Mallarino et al., 2011; Navalón et al., 2019; Alonso 
et al., 2020; Medina et al., 2020).

Aspects of both wing and bill morphology appear 
to have evolved in association with migratory 
status in kingbirds that have migratory, partially 
migratory and sedentary taxa. Our results suggest 
that migratory status has shaped wing morphology 
in a widespread avian genus, and that multivariate 
bill shape metrics may differ between sedentary 

and migratory lineages. Thus, adaptive phenotypes 
may be related to migratory status in more complex 
ways than previously understood. Assessments of 
the various mechanisms driving patterns in bill 
shape (e.g. heat dissipation, foraging strategy and 
competitive landscape) across a broader range of 
taxonomic groups that differ in migration strategies 
would complement our refinement of the morphology 
of migration in kingbirds.
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The data underlying the work, and the R code for 
all statistical analyses and results shared in tables 
and figures is available from the public Github 
repository (https://github.com/mmacphe/Tyrannus_
morphology). The voucher table and measurements 
of all individuals are available in the Dryad digital 
repository (MacPherson et al., 2021).
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. Supplementary results.
Appendix S2. ImageJ protocol for measuring long Tyrannus tail lengths.
Appendix S3. Sex-specific results: means for each morphometric, phylogenetic principal components analysis 
(PPCA) and phylogenetic ANOVA.
Table S1.1. Morphological measurement means for adults of 28 Tyrannus OTUs (millimeters). All measurements 
are shown ± standard deviation and with the sample size in brackets. After Tyrannus savana monachus, ‘CA’ 
refers to Central America and ‘SA’ refers to South America.
Table S1.2. Tests of whether age or sex classes play a role in morphological measurements. We used the mulTree 
function in the mulTree library to test the role of age and sex classes on each morphological measurement.
Table S1.3. Test of whether tarsus length is the best morphological measurement to approximate body mass. We 
used the mulTree function in the mulTree library to assess the correlation of all measured morphologies with body 
mass for 438 individuals that had mass data on specimen tags (representing 18 taxa) while accounting for phylogeny.
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Table S1.4. F and Pr(>F) values from phylogenetic ANOVA. Adjusted P-value after Bonferroni correction for 
multiple hypothesis testing is only shown for the instance using polytomies added with the most recent common 
ancestor at 0.5 Mya.
Figure S2.1. Image of a T. savana tail above 0.64 x 0.64 cm grid. Photos were taken directly above specimens 
using a RPS brand copy stand (https://www.amazon.com/gp/product/B003OAF2BA/ref=ppx_yo_dt_b_search_asin_
title?ie=UTF8&psc=1), Canon Rebel T1i SLR, and Canon 18-55 mm image stabilizer lens. Mitutoyo brand digital 
calipers were placed between the middle rectrices to the base of the tail and extended. We prioritized showing the 
measurement on the digital calipers and the end of the tail for future tail length calculations.
Figure S2.2. Measuring the tail length.
Table S3.1. Summary of morphological measurements for females from 28 Tyrannus OTUs (millimeters).
Figure S3.1. Ancestral state reconstruction of migration ecology strategy and wing chord length, and ordination 
of 28 Tyrannus OTU adult females for bill (length, width, depth) and feather (wing chord length, tail length, 
and Kipp’s distance). A) Kingbird phylogeny showing ancestral state reconstruction of migration ecology strategy 
(pie charts at each node), and wing chord length (branch greyscale). B-D) PPCA plots showing individuals color-
coded to species (identified at the tip labels of the phylogeny), shape-coded to subspecies, and their status as 
migratory, partially migratory, or sedentary is distinguished via the shape outline. Pie charts for each node in the 
phylogeny show the ancestral state reconstruction of migration type. E-H) photos of representative kingbird taxa 
with corresponding color- and shape-coded points in the top right of each photo. Taxa are as follows: E) Tyrannus 
savana savana (photo credit: Rodrigo Conte), F) Tyrannus caudifasciatus caudifasciatus (photo credit: Yeray 
Seminario / Whitehawk), G) Tyrannus crassirostris pompalis (photo credit: Martin Molina), and H) Tyrannus 
cubensis (photo credit: Dubio Shapiro).
Table S3.2. Results of phylogenetic principal component analysis (PPCA) of bill morphometrics for adult females. 
Percent variance explained by each eigenvector is in brackets for each principal component.
Table S3.3. T and P values from phylogenetic anova analysis for adult females. Values shown in brackets are 
from phylogenetic ANOVA with Bonferroni correction to account for multiple hypothesis testing. No Bonferroni 
correction was done for the assessment of Tail length because it was analyzed alone with two taxa removed due to 
missing data (T. savana sanctaemartae, T. caudfasciatus jamaicensis). Significant results are in bold.
Figure S3.2. Phylogenetic ANOVA results comparing residuals of bill and feather morphometrics (A-F), and 
coefficient of variation in bill and feather morphometrics (G-L) across migratory, partially migratory and sedentary 
Tyrannus OTU adult females. Significant differences are shown by different letters: A versus B.
Figure S3.3. Phylogenetic ANOVA results comparing bill phylogenetic principal component (PPC) scores across 
migratory, partially migratory, and sedentary Tyrannus OTU adult females. Significant differences shown by 
different letters: A versus B.
Table S3.4. Summary of morphological measurements for males from 28 Tyrannus OTUs (millimeters).
Figure S3.4. Ancestral state reconstruction of migration strategy and wing chord length, and ordination of 28 Tyrannus 
OTU adult males for bill (length, width, depth) and feather (wing chord length and Kipp’s distance). A) Tyrannus 
phylogeny showing ancestral state reconstruction of migration strategy (pie charts at each node), and wing chord 
length (branch greyscale). B-D) PPCA plots showing individuals color-coded to species (identified at the tip labels of the 
phylogeny), shape-coded to subspecies, and their status as migratory, partially migratory or sedentary is distinguished 
via the shape outline. Pie charts for each node in the phylogeny show the ancestral state reconstruction of migration 
type. E-H) photos of representative kingbird taxa with corresponding color- and shape-coded points in the top right of 
each photo. Taxa are as follows: E) Tyrannus savana savana (photo credit: Rodrigo Conte), F) Tyrannus caudifasciatus 
caudifasciatus (photo credit: Yeray Seminario / Whitehawk), G) Tyrannus crassirostris pompalis (photo credit: Martin 
Molina), and H) Tyrannus cubensis (photo credit: Dubio Shapiro).
Table S3.5. Results of phylogenetic principal component analysis (PPCA) of bill morphometrics for adult males. 
Percent variance explained by each eigenvector is in brackets for each principal component.
Table S3.6. T and P values from phylogenetic ANOVA for males. Significant results are in bold.
Figure S3.5. Phylogenetic ANOVA results comparing residuals of bill and feather morphometrics (A-F), and 
coefficient of variation in bill and feather morphometrics (G-L) across migratory, partially migratory and sedentary 
Tyrannus OTU adult males. Significant differences are shown by different letters: A versus B.
Figure S3.6. Phylogenetic ANOVA results comparing bill phylogenetic principal component (PPC) scores across 
migratory, partially migratory, and sedentary Tyrannus OTU adult males. Significant differences shown by 
different letters: A versus B.
Supporting Information 2. ImageJ protocol for measuring long Tyrannus tail lengths.
Supporting Information 3. Sex-specific results: averages for each morphometric, phylogenetic principal 
components analysis (PPCA) and phylogenetic ANOVA
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